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Abstract-A general solution for the steady-state heat conduction problem under a slab-on-grade floor 
with horizontal insulation is presented. The soil temperature field, the heat flux along the slab, and the 
total slab heat loss are obtained and analyzed using the Interzone Temperature Profile Estimation (ITPE) 
technique. The derived solution addresses all the common configurations for horizontal insulation of slab- 
on-grade floors. The elfect of the outer inner edge insulation on heat flux variation along the slab floor 
surface and on total slab heat loss is discussed and analyzed. Finally, the influence of water table level on 

total slab heat loss is ittustrated for various inner edge insulation configurations. 

1. INTRODUCTION 

THE THERMAL performance of the above-grade portion 
of buildings has been significantly improved after the 
energy crisis of the 1970s. As a consequence, the 
proportional foundation contribution to a building’s 
total heating load has increased. To improve the 
energy efficiency of slab-on-ground foundations, two 
insulation configurations are primarily used : (1) ver- 
tical insulation placed on the interior or on the exterior 
of the foundation walls, and (2) horizontal insulation 
placed under either the slab perimeter or the soil sur- 
face outside the slab. 

Several models exist for calculating heat losses from 
uninsulated or uniformly insulated slabs [l-3]. How- 
ever, very few models have addressed the heat transfer 
from .partially insulated slabs, especially when the 
insulation extends outside the building. Mitalas [4] 
provided correlations based on a finite element model 
for a comprehensive set of slab-on-grade insulation 
configurations. Unfortunately, the Mitalas cor- 
relations are restricted to certain insulation values and 
limited to particular geometric dimensions. Hagentoft 
[5] developed a semi-analytical model based on con- 
formal mapping and Fourier series to calculate heat 
losses from a house with variable thermal insulation 
thickness along the ground surface. The model did 
not allow for the existence of a water table underneath 
the slab. 

This paper presents a steady-state solution to the 
heat conduction problem under slab-on-grade floor 
with horizontal insulation. The insulation can be 
placed (i) uniformly under the slab as shown in Fig. 
l(a), (ii) a short distance inward from the perimeter 
of the slab (Fig. 1 (b)), or (iii) extending outward from 
the edge of the slab is indicated in Fig. I(c). The 
proposed model can handle any combination of the 
above mentioned horizontal insulation configur- 
ations. A water table effect is considered in this model. 

The soil temperature field and the heat flux along the 
slab are obtained and analyzed using the Interzone 

Temperature Profile Estimation (ITPE) technique 
[6-IO]. The model developed in this paper extends the 
method for treating slabs developed by Krarti [8]. A 
parametric discussion is presented on the effect of the 
outer/inner edge insulation and of the water table level 
on total slab heat losses. A companion paper will deal 
with heat loss calculation from a slab-on-grade floor 
with vertical insulation [ 1 I]. 

2. FORMULATION OF THE PROBLEM 

Figure 2 shows a model of a slab-on-grade floor 
with horizontal insulation. The insulation is placed 
along the perimeter of the slab and can extend along 
the soil surface. To account for thermal resistance 
between soil and room air or ambient air, an equi- 
valent air-insulation-slab (if any)-soil conductance, 
/I, is introduced : 

h = (/I, ’ + u; ’ + CJ- ’ + h- ’ ) - ’ 

where 
l h, is a convective heat transfer coefficient above 

the slab or the soil surface. 
l Ui is the insulation conductance. 
l Us is the slab material (or soil layer above insu- 

lation extending outward) conductance. 
l hi is the interface contact conductance (slab-to- 

earth or insulation-to-earth). 

The steady-state temperature distribution 7&y) in 
the soil beneath the horizontally insulated slab-on- 
grade floor model of Fig. 2 is subject to the Laplace 
equation : 

d’T a2T 
gp+‘==o 

ay - 
(1) 

with the boundary conditions : 
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NOMENCLATURE 

;: 
building half width [m] 
water table depth [m] 

C,,, fn Fourier coefficients 

ri 
interior perimeter insulation location [m] 
exterior perimeter insulation length [m] 

H ratio, h/k, [m- ‘1 
Ha ratio, ha/k, [mm ‘1 
I1 slab overall heat transfer conductance 

[Wm-‘K-l] 

T, building air temperature [K] 
TS soil surface temperature [K] 
TN water table temperature, assumed to be 

the reference temperature [K] 
u insulation conductance [w m- ’ K- ‘1 
us slab or soil layer conductance 

[Wrn-‘Km’] 
s, )’ space coordinates [ml. 

exterior perimeter insulation/soil 
conductance [w m- ’ K- ‘1 
interface contact (slab-earth or 
insulation-earth) conductance [W 
mm2 K-7 

Greek symbols 
$. Pip coefficients defined in equation (5) 
3;. ltp ;fLp coefficients defined in equation (7) 
r,,, p,, eigenvalues. 

ho convective heat transfer coefficient above 
the slab or soil surface conductance Subscripts 
[Wm-‘K-‘1 a outer edge of the slab 

ks soil thermal conductivity yW m ’ K - ‘1 e inner edge of the slab 
T soil temperature [K] m middle of the slab 
T, ambient air temperature [m] I, II zone (I), zone (II). 

T=O fory=b 

T= T, for)‘= T, and lx] > a+d 
+ &,X c,, cos jl”.Y S’n;i!;;;y) (2) 

” 

dT 
- = H(s)(T- T,,(s)) for y = 0 and lx] < u+d 

In zone (II), the temperature T,,(x,y) is given by 

a)) 7 +% f-T 

where the temperature field has been normalized to 
T = 0 at the water table depth b (i.e. T, is assumed to 
hz the reference temperature), and where H(x) is the 
ratio of the equivalent air-insulation-slabsoil con- 
ductance to soil thermal conductivity (i.e. 
H(x) = h(x)/k,). In this paper, H(x) is defined by 

HII, if ]x( < c 
H(x) = He if c < 1x1 c a 

H, ifu < Is] c a+d. 

Figure 2(b) shows the variation of the function 
H(x). In Fig. 2(c), the temperature variation Ti,(x) is 
illustrated. T, is the room air temperature and T, is 
the ambient air temperature. 

Figure 2(a) shows that the surfaces 1.~1 = a+d 
divide the ground medium into three zones. Because of 
the symmetry around the axis x = 0, the temperature 
Z&y) needs to be determined only in zones (I) and 
(II). Let I(J) be the temperature profile along the 
surfaces Ix] = a+d. Fourier series solution of the 
Laplace equation (1) can be found using the separ- 
ation of variables technique. In zones (I), the solution 
T&Y, u) is expressed as : 

T,,(s,y) = z c sin v,,y 
b n=, 1 

f (, -e -M.+(u+d))) 
n 

+Le- v"(l.+w+J)) (3) 
1 

where, 

v,, = $; jl,, = 
(2n- 1) 
2(and) 

C, and /;, are Fourier coefficients to be determined. 
The continuity of the heat flux at the surface 

1x1 = a+d, gives the condition 

(4) 

or 

i ,r, v,,.L tanh (~,,(a + 4) sin v,y 

= % E sin v,y{T,-v&j. 
n- I 

Multiplying the above equation by sin v,,y and 
integrating over [0, b] yields an expression of the form : 
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with 

l X 

\;(I +tanh (~,,(a+d))) 

I(-- I)“!4 
“G = - (u+~/)(l+tanh (v,,(a+~/)))(~~+v,‘)’ 

The third-kind boundary condition of equation (1) : 

ST, 

?.I* .v=” 
= H(x)(T, - Ti,(s)) (6) 

gives the following expression : 

cash vrv 
cash v,,(a+d) 

- & x Jo& coth jc”b cos P,,X 
I, I 

= H(x) pd) “r; C” cos jl”x- r,(x) 
{ 1 

Multiplying this equation by ccrsjj+ and integrating 
over the interval [-a -d, a + d] yields : 

cp = a; + y  PhJ; + c r:.pc,, (7) 
n= I 

with 

Slab 
Insulation 

Soil 

Slab 
Insul 

Soil 

ation 

(b) 
FIG. 1. Horizontal insulation configurations for slab-on-grade floors. (a) Uniform insulation, (b) perimeter 

insulation under the slab, (c) insulation placed on the building exterior. 
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Slab 

Soil 

r,[H, sin/c,,n+(H,,-H,) sin&cl 

- Ha T:, sin /c,a 
Ii 

(H;, + p,, coth ,r~,,b) 

/& = , 2(- ‘)“&“n 
NV,; +p,,)(H, + v,, coth &b) 

;I;,, = - 2[(H,- H,)E~,p++H,,-KE,pl 
(a+d)(H,+p, cothQ) 

where 

Note that the case of a partially insulated slab is 
obtained when d = 0 and H, = H,. Reference [7] 
treats this particular case in detail. 

The system of equations (5) and (7) is solved by 
truncating the sum to a finite number of terms, N. A 
linear system of 2N equations with 2N unknowns (C,, 
and.f,,p = I,2 ,..., N) is obtained and is solved by the 
Gauss-Jordan elimination method. The temperatures 
T,(.u, y) and T,,(x,v) are then determined by sub- 
stituting the values of the coefficients C, and J, in 
equations (2) and (3). For the slab configurations 
treated in this paper, N = 25 gives accurate esti- 
mations. Indeed, addition of more terms does not 
significantly affect the results for T,(x,y) and T,,(x,y) 
by more than 0.05 K variation in soil temperature, for 
the cases treated in this paper. 

3. SOIL TEMPERATURE DISTRIBUTION 

Figure 3 shows temperature profiles within soil 
beneath a slab of width 2a = IO m. The air tem- 

perature is T, = 21LC, while the soil surface tem- 
perature T, = 16,-C. The ambient air temperature is 
assumed to be r;, = 16”‘C. A water table at a depth 
b = 5 m beiow the soil surface exists with a constant 
temperature T, = 11°C. 

Eight different configurations are considered in 
Figure 3. 

(a) Uninsulated slab without any horizontal insu- 
lation(H,,,=4m-‘;H,= Ha= co;c=d=O). 
Figure 3(a). 

(b) Partially insulated slab with interior edge insu- 
lation extending 0.5 m (H, = 4 m-‘, H, = 0.1 
m ~’ ; H, = cc; c = 0.5 m; d = 0 m). Figure 
3(b). 

(c) Partially insulated slab with interior edge insu- 
lation extending 2 m (H, = 4 m-‘, H, = 
O.lm~‘;H,=co;~.=2m;d=Om).Figure 
3(c). 

(d) Uniformly insulated slab (H,,, = H, = 0.1 m- ’ ; 
H, = a ; c = 5 m; d = 0 m). Figure 3(d). 

(e) Partially insulated slab with exterior edge insu- 
lation extending 0.5 m (H,,, = HC = 4 m-‘, 
H:, = 0. I m- ’ ; c = 0 m ; d = 0.5 m). Figure 3(e). 

(f) Partially insulated slab with exterior edge insu- 
lation extending 2 m (H,,, = H, = 4 m- ’ ; 
H, = 0:l m- ’ ; c = 0 m; d = 2 m). Figure 3(f). 

(g) Partially insulated slab with exterior edge insu- 
lation extending 4 m (H, = H, = 4 m- ‘, 
H,,=O.lm-‘;c=Om;d=4m).Figure3(g). 

(h) Partially insulated slab with interior edge insu- 
lation extending 2 m and exterior edge insu- 
lation extending 2 m (H,,,=4 m-‘; H,=O.l 
m ~‘;H,=0.1mW’;c=2m;d=2m).Figure 
3(h). 

Figures 3(a)-(d) show the effect of adding insu- 
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‘FIG. 2. (a) Slab-on-grade floor with horizontal insulation; (b) distribution of the ratio H = h/k,; 
(c) distribution of the temperature at the soil surface. 

lation on the ‘inner’ perimeter of an uninsulated slab 
(i.e. under the slab). The temperature change at the 
edge of the slab becomes less abrupt as the length of 
the insulation increases. Indeed, Fig. 3(a) indicates 
that the temperature varies from 20 to 17’C within 
only 0.3 m of the perimeter. The same temperature 
variation occurs over a greater perimeter width when 
inner insulation is added. This width extends from 
the slab perimeter to a distance of 0.6 m for 0.5 m 
insulation, Fig. 3(b), 1.0 m for 2.0 m insulation, Fig. 
3(c), and 2 m for a uniform insulation, Fig. 3(d). The 
decrease in the perimeter slab temperature gradient 
indicates a decrease in the heat losses from the slab 
edges. Additional discussion of heat flux from slabs 
with partial inner perimeter insulation can be found 
in ref. [8]. 

Figures 3(e)-(g) show soil temperature dis- 
tributions when insulation is added horizontally out- 

side the building. The soil surface temperature in the 
outer vicinity of the slab (but under the insulation) 
increases with the length of the exterior insulation. In 
particular the double point (i.e. the point on the soil 
surface, defined by -y = 0 and 1.~1 > a+d, and kept 
at a temperature of 16”C, that meets the 16’C iso- 
therm) moves away from the slab as the exterior insu- 
lation length increases. One effect of warming the soil 
surface around the slab edge is a decrease in heat loss 
from the slab perimeter as will be discussed later. Note 
that as the insulation extends still farther from the slab 
(beyond 2 m), the soil surface temperature reaches a 
minimum at a distance of 2 m from the slab. 

Figure 3(h) illustrates the temperature isotherms 
beneath a slab insulated with an insulation of approxi- 
mately RSI = 10 (i.e. H, = H, = 0.1 m- ’ for a soil 
with k, = 1 .O W m- ’ K- ‘) extending on both exterior 
and interior edges. 



2140 M. KRAKTI 

-1 

E -2 
5 
8 

D 
.Z 
4 -3 

-4 

-5 

0 1 2 3 4 5 6 7 El 9 10 

Distance from Slob Center, m 

(4 

0 

-1 

E -2 
5 
e 

0 
.‘; 
:: -3 

0 1 2 3 4 5 6 7 8 9 10 

Distance from Slab Center. m 

(b) 

FIG. 3. Earth temperature isotherms beneath a slab-on-grade floor with water table depth b = 5 m and 
(a)H,=H,=4m-‘, H,,=crj:(b)H,,,=4m~‘.H,=0.1m-‘.H,=m,c=0.5m. 

4. HEAT FLUX DlSTRl6UTlON Using the third boundary condition of equation (I), 

The slab heat flux distribution q(x) is proportional it can be shown that 

to the temperature gradient along the slab surface 
q(x) = - ; k&x) ‘cu C,, + e 

> 
cos /4,x. (9) 

q(x) = -k,g 
t,= I 

aY y=o’ 
(8) 

Figure 4 shows the heat flux distribution along a 
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slab of width 21 = 10 m. The temperature above the area of the slab are not affected by the presence of 
slab is T, = 21°C. The soil surface temperature is perimeter insulation. 
T, = 16°C while a water table exists at a depth of 
b = 5 m and is at the temperature T, = 11°C. The 
case of H, = 1 m- ’ is representative of a moderately 
insulated slab. Figure 4 indicates clearly that by 5. TOTAL SLAB HEAT LOSSES 

adding insulation in the outer perimeter of the build- By integrating the heat flux function q(x) given by 
ing, slab heat losses are reduced from the building equation (9) over the interval [--a, a], the total heat 
edges as expected. The heat losses from the central loss from the slab is obtained : 
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FIG. 3.-C’o~1ri~nrec/. (e) H, = H, = 4 m- ‘, H, = 0. I m- ‘, d = 0.5 m; (f) H, = H, = 4 m- I ; d = 2 m. 

Q+y (H,q&.E L 
The slab configuration is similar to that of Fig. 4. As 

n= I P. expected, Fig. 5 indicates that an increase in outer 

-H C-1)” 
c- I( 

perimeter insulation (either through increasing the 
c +(-I)” width d or decreasing the ff, value) reduces the total 

P, 
” ---q (10) 

P,t > heat loss from the slab floor. This decrease however 

Figure 5 shows the dependence of the total heat loss 
is subject to the law of diminishing returns. Over half 

on both width and thermal U-value of the insulation. 
of the slab heat loss reduction is achieved in the first 
0.5 m of the outer insulation. For this first 0.5 m of 
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F1o.~.-C0~tin~1~~.(g)H,=H,=4m-‘,H,=0.lm~’,d=4m;(h)H,=4m~‘,H,=H,=O.lm~‘. 
c=d=2m. 

outer insulation. the slab heat loss reductions do not 
exhibit a strong variation with the insulation U-value. 
In general, the impact of outer insulation width on 
slab heat loss is more significant than that of the 
insulation U-value. 

Figure 6 illustrates the effect of both water table 
depth and the inner edge insulation location (i.e. the 
parameter c) on the total slab heat loss. The insulation 

H-value is assumed to be H, = 0.5 m- ‘. For a given 
water table depth, the increase in the inner edge insu- 
lation width (i.e. the parameter (u-c)) reduces the 
total heat loss from the slab following the law of 
diminishing returns. For a given insulation con- 
figuration, Fig. 6 shows that the magnitude of total 
slab heat loss increases as the water table level 
decreases. In addition, the rate of reduction in slab 
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FIG. 4. EiTect of outer edge insulation on local heat flux distribution along an uninsulated slab-on-grade 

35 - Ha = 0 m-’ 

IX----S Ha = 0.2 m-l 
- Ha = 0.6 m-1 

- Ho = 1.0 m-l 
530 

3 

1 2 

Outer edge insulation width, m 

FIG. 5. Effect of outer edge insulation and its length on the total slab heat loss. 

heat loss due to an increase in the inner edge insulation tion beneath a slab with horizontal insulation. The 
width increases as the water table depth decreases. insulation is placed under the slab and/or at the 

ground surface outside the slab. The effect of the insu- 

6. CONCLUSION 
lation width and U-value on foundation heat losses 
is analyzed. In particular, it is shown that outer insu- 

The ITPE technique is applied to develop the lation is effective in reducing heat loss from slab edges. 
steady-state solution of the heat conduction equa- It is found in particular that it is thermally better to 
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FIG. 6. Etlect of water table level on the total heat loss from a slab with inner edge insulation 

extend the length of outer edge insulation rather than 
increase the insulation thermal resistance over a short 
distance from the slab edge. Finally, the total slab 
heat loss was found to be significantly affected by the 

water table level. 
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